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Abstract  

Pauli's spinor theory is deduced entirely from a postulate relating to the two-valuedness 
of the spectrum of the Pauli spin operators, without explicit use of the theory of group 
representations, or any assumption concerning the angular momentum properties of 
these operators. 

1. Introduction 

Pauli's theory of the spin of  the electron (Pauli, 1927) forms an important 
part of nonrelativistic quantum mechanics, but its original formulation-as 
is not infrequently true of pioneering contributions-leaves room for further 
clarification. This is done concisely by Wigner (1959) and by van der Waerden 
(1974) in terms of the theory of group representations. In this note an 
alternative approach to Pauli's theory is developed that employs only 
elementary quantum-mechanics algebra in addition to a minimal postulate 
reflecting the results of  the Stern-Gerlach experiment. As in the approaches 
of Wigner and of van der Waerden, the angular momentum character of the 
Pauli spin operators is not assumed but is deduced; and it is also shown, 
incidentally, that consistency with the results obtained requires essentially 
that physical space be three-dimensional. 

2. The Postulate 

We consider an n-dimensional (n/> 3) Euclidean vector space and a Hermitian 
operator S(u), a quantum-mechanical "observable," defined for every unit  
vector u of this space, and subject to the following condition: 

(I) The operator S(u) has for every u the same eigenvector space 
and the same two finite nondegenerate eigenvalues Sl, s2, without 
its dependence on u being vacuous. 
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By proper choice of origin and unit for the quantity represented by the 
observable S we can arrange to have 

s 1 = +1, s 2 = -1  

3. Derivation o f  a Preliminary Result 

From postulate (I) and equation (2.1) it follows that the operator S(u) -= S 
satisfies the condition S 2 = I, the unit operator. Therefore, since S is also 
Hermitian, and hence 

S t = S = S -1 

S is also unitary. Combined with the fact stemming again from (I) and (2.1), that 
every matrix representation S of S is traceless, it follows readily that S is of the form 

cos/3 exp(ic 0 sin ill, 
exp ( - ia )  sin ~3 -cos/3 ] ¢~,/3 real (3.1) 

From this is deducible the following pivotal result: 

(A) When the vectors u, u' are mutually orthogonal, i.e., when 
u • u' = 0, then the matrix of S(u) in the eigenbase of S(u') [i.e., 
the base formed by the eigenvectors of S(u')] has the form 

oXp /o ) 
Let C a (u), C2(u) be normalized eigenvectors of S(u) associated with the 

eigenvalues +1 and -1 ,  respectively; denote Ca(u)by Ca, Ca(u') by C~, S(u) 
by S, and set 

(Ca, S~b) =- Sab, (~a, SO;) --- S'ab, (qJa, C'b) =- Tab (3.3) 

with a, b = 1,2. Using the repeated-index summation convention, one has 

Sab =(Tca Ce, STab Ca) = T*aTabSca 

In particular, since 

one finds that 
t 

S~I = [Till 2 - [T21t 2, $22 = IT1212 - [T22t 2 (3.5) 

By the last of equations (3.3), [ Tab 12 is the probability of measuring the 
eigenvalue s a in the state Cb- Hence S'11 , S~2 represent the differences of 
the probabilities of measuring the eigenvalues +1 and -1  in the states C] and 
C~, respectively. One may have an intuitive feeling arising from symmetry 
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considerations that  these two quantities are zero. We proceed to prove that 
this is indeed the case. To begin with, it is clear that these quantities must 
have the form of the diagonal elements of  the general matrix (3.1). This is 
verified at once from the unitarity of  the matrix T, which shows that 

? 

ISli  [ ~< 1, so that we can write 

S'11 = cos X (3.6) 

By the same unitarity we find the relation S~2 + S~1 = 0, which also agrees, as 
it must,  with the form of the matrix (3.1). To complete the proof  of  the result 
(A) it remains thus to show that the quanti ty (3.6) actually vanishes. This is 
accomplished upon invoking the isotropy property of  the underlying vector 
space [which implies that  the value (3.6) does not depend on the choice 
of  the vector pair u, u', subject to the relation, u .  u'  = 0], by evaluating the first 
of  expressions (3.5) explicitly with respect to two unit vectors u 1, u 2 that  
are mutually orthogonal and each orthogonal to u. The operators S(ua) and 
S(u2) have in the eigenbase of S(u) the matrix representations (3.1) with 
~3 = X and a = ~1 and ~2, respectively. Their normalized eigenvectors are thus 
found to have, in understandable notation, the expressions (unique up to an 
inconsequential phase factor) 

,(_+k) = (+_ sin X e irk [2(I -T- cos X)] -v2 ,  [(1% cos X)/2] 1 /2 ) ,  (k = 1,2)  
(3.7) 

where the subscripts refer here to the eigenvalues +1 and - 1 ,  respectively. 
By equations (3.6), (3.5), and (3.3), we must have 

[(,(+1), ,(+2))12 _ 1(,(1), , (2 ) ) [2  = cos X 

Substituting from (3.7) and replacing cos X by w, the last equation reduces to 

[(1 + w) exp[i(a  2 - a l ) ]  + (1 - w)l 2 - I - (1 - w2) 1/2 exp [i(c% - a l )  ] 

+ (1 - w 2 ) 1 / 2 1 2  = 4 w  

o r  

w ( w  - 1) = 0 

It is easily seen that the solution w = t,  for which the matrix (3.1) becomes 
identical with the matrix (3.4), is unacceptable because it renders S(u) com- 
pletely independent of u, which is prohibited by the last condition in 
postulate (I). Hence w =- cos X = 0, and the matrix (3.1) assumes the form (3.2). 

4. Connection with the Dimensionality o f  Physical Space 

From the result (A) it follows, writing again S and S'  for S(u) and S(u') 
respectively, that 

[S, S']+ ~- SS' + S'S = 0 when u " u'  = 0 (4.1) 
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This relation will of  course be established if it is shown to hold in some given 
matrix representation and, by  the isotropy argument, for some orthogonal pair 
u, u'. (It  is tacitly assumed throughout that all vectors whose designation involves 
the symbol u are unit vectors). It suffices then to evaluate the ant icommutator  of  
the matrices (3.4) and (3.2), and this does indeed vanish. 

The result (4.1) leads to the following basic conclusion: 

(B) I f  ui (i = 1, 2, 3) form an orthonormal triplet, and oq, ~2 are 
the values of  the parameter a o f  (3.2) associated with the matrices 
of  S(ul), S(u2) in the eigenbase of  S(ua) , then 

~2 - ~1 = + 7r/2 (modulo 2n) (4.2) 

This can be seen with the aid of  a formula, that will be needed later in 
another connection, namely, 

[ m l , m 2 ] +  = 2 cos (oq -- a2) - I  (4.3) 

where M i represents the matrix (3.2) for ~ = ~i (i = 1,2).  This identity is 
verified immediately,  and the result (4.2) follows by combining it with the 
result (4.1). 

The result (B) shows directly that the dimensionality of  our underlying 
vector space, and hence of  our physical space as well, cannot be > 3. For if 
it were, then there wotdd exist in addition to the vectors u i (i = 1, 2, 3) o f  
theorem (B), a fourth vector u 4 normal to all of  them. In that case, retaining 
the eigenbasis o f  u3, we would have simultaneously the pair of  relations 
o~ 4 - oq = + 7r/2 and ~4 - az  = -+ 7r/2, which is obviously inconsistent with 
the relation (4.2). 

5. General Determination o f  the Operators S(u) 

Considering first a right-handed triplet of  directions u i (i = 1,2,  3) in our 
physical space, and working in the eigenbase of  S(u3) , the matrix S(u3) is 
given by equation (3.4), while some arbitrariness remains in fixing S(ul) and 
S(u2) subject to the form (3.2) and the result (B). In the first place, owing 
to the arbitrariness in a phase factor of  a normalized state vector, there is an 
associated arbitrariness in the off-diagonal matrix elements of  S; namely, 
Saz and $21 can be multiplied by factors of  the form expqo)  and e x p ( - i a ) ,  
respectively (or real). It constitutes, therefore, a permissible normalization to 
choose a = 0 in (3.2) as corresponding, say, to the direction ul  which we 
shall in the sequel take as the direction of  the x-axis of  a right-handed rectangular 
coordinate frame. In the second place, there is freedom in the choice of  the sign 
in equation (4.2). Choosing the minus sign conforms with the original conven- 
tion of Pauli, and our matrices S(ui) indeed coincide with the Pauli matrices: 

; ) .  o) O. 
(5.1) 
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It remains to find the expression for the matrix S(u) for an arbitrary u, 
in the eigenbasis of  S(u3), and under the normalization represented by (5.1). 
This can be done in two steps as follows: 

If  u is normal to u3, let 4~ denote the angle from u 1 to u (u a -~ u 2 determin- 
ing the positive sense of  rotation),  and set 

= f ( ~ )  (0 < ~ < 2~) (5.2) 

By the normalization which we have introduced, 

f (0 )  = 0 (5.3) 

From the latter equation and equation (4.3), we have, in understandable 
notation, 

[M, M1] + = 2 cos f(~b). I (5.4) 

Under the rotation ~b -+ q5 + qS' - qS", equation (5.4) is transformed into 

[M",M'] + = 2 co s  [ f ( ~ " )  - ; ( ~ ' ) ]  • I 

which is independent o f  the choice of  phase normalization, and thus, in view 
of the isotropy of  space, must yield the same value as expression (5.4), so 
that 

cos  [ f ( ~ " )  - f ( ~ ' ) ]  = cos  f ( ~ )  (5.5) 

Taking account of  (5.3), there follows the identity 

f(q~") - f (~ ' )  = +_f(~b) (5.6) 

The arbitrariness in sign can be disposed of  by considering the sister identity 
to (4.3), obtained by taking the corresponding commutator ,  namely,  

[MI,M2] = 2i sin (a I - ~2) Oz (5.7) 

By reasoning similar to that which led to (5.5), one obtains the identity 

sin [f(q~") - f(qS')] = sinf(q~) 

which rules out the minus sign in (5.6). The resulting identity 

f ( ¢  + ~')  = f(q~) + f (¢ ' )  (5.8) 

is familiar, and since f(O), considered as a real-valued function for 
_~o < (~ < ~o, must be bounded over every finite interval (being finite for 
every finite 4)), it has the solution 

f ( ~ )  = c ~  

(see Appendix). This is consistent, as it must be, with the normalization 
represented by the first matrix of  the Pauli set (5.1). For agreement with the 
second matrix, one has to take C = - 1 .  Thus, with the Pauli normalization, 
the matrix (3.2) takes on the form 

exp(i~) ~ cos 4 " o x + sin q~ - ~y 
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In other words, if u -= u(~) is normal to u 3, then in the eigenbasis of  S(u3): 

S[u(q~)] - S(cos q~. u 1 + sin ~ .  u2) = cos (pS(ul) + sin 40S(u2) 

Since tl-tis relation is valid in any state-vector basis, it holds also if the matrices 
S are replaced by the operators S. Moreover, the orthogonal pair ul,  u2 is 
arbitrary, in view of  the isotropy of  space. Therefore generally, 

S(cos~u 1 +sin~u2)=cos4oS(u l )+s inOS(u2) ,  U l ' U 2 = O  (5.9) 

If u is not  normal to u3, then there exist angles q~, 0 such that 

u = cos 0 • u3 + sin 0 • u', u' = cos ~" ul + sin ~" u2 

and an application of  equation (5.9) yields the relation 

S(u) = cos 0 S(u3) + sin 0 S(u') = cos 0 S(u3) 

+ sin 0 [cos ~b S(ul) + sin ~ S(u2)] 

Written more compactly, our general result is as follows (summation over 
repeated indices i , j , . . ,  over the range 1,2,  3 being assumed here and in the 
sequel): 

(C) If (u 1, u2, u3) is an orthonormal vector triplet then 

S(aiui) = aiS(ui); a/real, and a,ai = t (5.10) 

6. The Transformation o f  Pauli Spinors under Rotations 

in the light of  the preceding results it is clear that the eigenvector ~b - ~(u) 
of  the operator S = S(u) given in equation (5.10), and corresponding in our 
units to the eigenvalue +1, can be identified with a general Pauli spinor, the 
operator S itself representing the projection of  the intrinsic angular momentum 
of  an elementary particle of  spin 1/2 along the direction given by u. The 
transformation of  7; under a rotation of  axes x x ,  associated with the proper 
orthogonal matrix R is therefore of  the form 

R 
-+ ~b' = U~ (6.1) 

where the corresponding transformation of S is 

S ~ S' = USU* (6.2) 

Our task is then to determine the unitary operator U, which satisfies equation 
(6.2) for any given u, and by equation (5.10), it suffices to solve this problem 
when S = S(ui) ==- Si(i = t, 2, 3). 

First, we note that a rotation or  axes 

x -+ x' : x~ = Ri ix  i 

is represented by the associated transformation 

ui -+ u~ = Ri ju  i 
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Since RqRkj = 8ik, it follows from equation (5.10) that 

s(u3 - s ; :  R/js(uj) R jsj 

Our problem reduces thus, upon taking account of equation (6.2), to finding, 
if possible, a unitary operator U which satisfies the following set of equations: 

Rij ~ = US/U?(/= 1,2, 3) (6.3) 

The matrix U of U is of course determined only up to a phase factor [which is 
consistent with the similar arbitrariness in ff occurring in equation (6.I)], and 
this can be fixed to make the determinant of U unity. We have thus the fami- 
liar result, 

( a  b , ) , a t 2 + l b l 2 =  1 (6.4) U=-+ -b* a ' 

In the matrix representation (5.1), we have then the equations Rija] = Uoi U t, 
w h e r e  t9" 1 K Ox, etc., or 

Rqc~jg= goi(i = 1, 2, 3) (6.5) 

We solve these equations by introducing as parameters the Euler angles 
4, O, ~ (as defined in Goldstein, 1950). For the rotation about the z-axis with 
angle q~, the equation for i = 3 in (6.5), namely the vanishing of the commut- 
ator of Uand o3, yields immediately, in view of equation (6.4), the result 
b = 0; and the equation for i = 1 or i = 2, the result a = -+exp(-iO/2). For a 
rotation about the x-axis with the angle 0, the first equation (6.5), namety 
the vanishing of the commutator [ol, U], one finds that a = a*, b = -b* = iB; 
then from either the second or the third equation (6.5), it follows that 

B/a = -sin 0/(cos 0 + t) = - tan 0/2 (6.6) 

When this equation is combined with the second equation in (6.4), we get 
a = + cos 0/2, and applying equation (6.6), B = T-sin 0/2. Consequently, 

U= +_ ( ; xp(-i~ /2) 

. ( ;xp (-iq~/2) 

e0xp (iff/2)) .  (cos 0/2 
\ - i  st. o/2 

e0xp (i~/2)) 

\ 
- i  sin 0/2] 

/ 

cos 0/2 ] 

= +_ [cos(O~2) exp [-i(~ + ff)/2] - i  sin(0/2) exp [i(q~ - ~)/21t 

\ - i  sin(0/2) exp [i(q;- ~b)/2] cos(0/2) exp [i(q5 + if)/2] ] ,  

which agrees with the corresponding result on page 613 of Pauli's paper 
(1927), upon correcting an obvious misprint, and taking account of the 
difference in sign conventions in Goldstein, t950 and in Klein and Sommer- 
feld, 1897 (to which Paufi refers). 
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7. Summary 

Pauli's theory of the spin of  an electron, as first enunciated by him in the 
introductory part of  his fundamental paper (1927), is developed here axio- 
matically, using essentially only Postulate I and the isotropy property of  the 
Euclidean metric of  physical space. Because of  our knowledge of  the structure 
of  the two-dimensional linear group representation of the rotation group of  our 
physical space, the results presented in the present paper are in themselves 
not surprising. They are nevertheless illuminating in bringing out explicitly 
the intimate connection between the quantum-mechanical intrinsic angular 
momentum properties of  our nontransitory elementary particles and the basic 
properties of  our physical space. The analysis employed represents incidentally 
an alternative derivation of the fundamental representation of  the three-dimen- 
sional rotation group. 

In addition to the classic work of Wigner and of van der Waerden referred 
to in Section 1, I should mention Feynman's  interesting and instructive dis- 
cussion of  the subject in his Lectures (1965). This was called to my attention 
after writing of this paper was completed without my being acquainted with 
that work, with the comment  that there exists significant similarity in the two 
treatments. Upon examining it, however, it seems to me that the latter comment  
overlooks nontrivial differences in the methods employed. 

Appendix 

Suppose that f (x)  is a real-valued function o f x  for - ~  < x < ~ ,  satisfying 
the identity 

f ( x  + y) = f ( x )  + f ( y )  ( a l )  

and the inequality, 

I f (x)  [ < A  < ~ in a bounded in terval /  (A2) 

By well-known simple steps it can be shown that the function g(x) = f (x )  - Cx 
vanishes for all rational x, where C = f ( 1 )  4: ~ .  Since g(x) satisfies the identity 
(A 1), and by condition (A2), I g(x) [ < B < ~ in I ,  the existence of a real 
number ~ such that g(~) = K 4= 0 would lead to an absurdity: For a positive 
integer n such that nK > B, and a rational number y for which n~ + y  is in I,  
we would have 

B > [ g(n~ + y)  [ = I g(n~) [ = n l g(~) L = nK > B 

Hence we must have g(x) -= 0, i.e., f (x )  = Cx. 
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